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Abstract

Soft set theory and rough set theory are treated as mathematical approaches
to deal with uncertainty. They are combined together by F.Feng et al. In[29], we
introduce the notion of soft rough sets on a complete atomic Boolean lattice as a
generalization of soft rough sets. In this paper, we strengthen the concept of soft
rough on a complete atomic Boolean lattice by defining the concept of MSR sets
on a complete atomic Boolean lattice. In this model, some properties which were
not satisfied in soft rough sets on a complete atomic Boolean lattice can be proved.
Finally, the notion of approximations of Boolean lattice information system with to
another Boolean lattice information system is studied and we gave an applicable
example to illustrate this notion.

Keywords: Complete atomic Boolean lattice; soft rough approximation operators on
a complete atomic Boolean lattice- MSR sets on a complete atomic Boolean lattice.

1. Introduction

In recent years, scientists, engineers and mathematicians have shown great interest
in uncertainty as it found many fields like decision making, engineering, environmental
science, social sciences, and medical science etc. Probability theory, fuzzy set theory [1],
rough set theory [2, 3] and other mathematical tools have been used successfully to describe
uncertainty. Each of these ideas have its inherent difficulties as pointed out in [4,5]. Con-
sequently, Molodtsov proposed a novel concept for modelling vagueness and uncertainty
called soft set theory.
Theory of soft sets has enough parameters, so that it is free from above mentioned diffi-
culties. It deals with uncertainty and vagueness on the one hand while on the other it has
enough parametrization tools. These qualities of soft set theory make it popular among
researchers and experts working in diverse areas. Applications of soft set theory can be
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seen in [6-12] Research on soft set theory is growing rapidly [13-17]. Maji and Roy [17],
Maji et al. [18,19] further studied soft set theory and used it to solve some decision making
problems for fuzzy soft sets by combining soft sets with fuzzy sets. Roy and Maji [20]
presented a fuzzy soft set theoretic approach to decision making problems. Jiang et al. [21]
extended soft sets with description logic. Aktas and Cagman [22] defined soft groups. Feng
et al. [23,24] investigated relationships among soft sets, rough sets and fuzzy sets. Shabir
and Naz [25] investigated soft topological spaces. Ge et al. [26] discussed relationships
between soft sets and topological spaces. Li and Xie [27] studied the relationships among
soft sets, soft rough sets and topologies. Ali [28] introduced the concept of a soft binary
relation and investigated the soft upper and lower approximation operations with respect
to soft equivalence relations. In [29] we presented soft sets on a complete atomic Boolean
lattice as a generalization of soft sets and obtained the lattice structure of these soft sets.
Li et al. [30] considered soft coverings.
Rough set theory, introduced by Pawlak [31] in the 1980s, is a powerful machine learning
tool that has applications in many data mining [32-34] instances, attribute and feature
selection [35-37], and data prediction [38, 39]. Rough set theory was proposed as a formal
tool for modeling and processing incomplete information in information system. Pawlak
rough set is mainly based on equivalence relation. But in practical it is very difficult to
find an equivalence relation among the element of a set. So, some other general relations
such as tolerance one and dominance ones are considered to define rough set models. Many
interesting and meaningful extensions of Pawlak rough sets have been presented in the
literature. Equivalence relations can be replaced by tolerance relations [40], similarity rela-
tions[41] and binary relations [42-44]. The properties of the rough approximations in more
general setting of complete atomic Boolean lattice were studied by Järvinen in [45]. All
these proposals share the common feature that they deal with approximations of concepts
in terms of granules.
The major criticism on rough set theory is that it lacks parametrization tools. In order to
make parametrization tools available in rough sets a major step is taken by Feng et al. in
[46]. They introduce the concept of soft rough sets, where instead of equivalence classes
parameterized subsets of a set serve the purpose of finding lower and upper approximations
of a subset. Also, soft sets are combined with fuzzy sets and rough sets in [47]. The concept
of rough soft group is defined in [48]. In [49], Shabir introduced a new approach to soft
rough sets called modified soft rough set (MSR-set) and studied some of their basic prop-
erties. In [29], we defined two pairs of soft rough approximation operators on a complete
atomic Boolean lattice and give their properties. These operators suffer from unexpected
properties such as soft upper approximation of non zero element might be equal zero and
soft upper approximation of any element might not greater than this element. To resolve
this problem, we introduce the notion of modified soft rough set on a complete atomic
Boolean lattice and its application in decision making was analyzed.
This paper is arranged as follows, in section 2, some basic concepts of soft sets and rough
sets on a complete atomic Boolean lattice are discussed. Also, we discuss the notion of soft
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rough set on a complete atomic Boolean lattice. The purpose of section is to introduce the
notion of modified soft rough sets on a complete atomic Boolean lattice and study their
properties. In section 4, we introduce the notion of Boolean lattice information system.
Also, the relationship between the Boolean lattice information and soft sets on a complete
atomic Boolean lattice is discussed. Also, We study the relation between the mapping
induced by a Boolean lattice information system induced by a soft set fA on a complete
atomic Boolean lattice B and the mapping induced by fA on B. In the last section, the
concept of approximations of Boolean lattice information system with respect to another
Boolean lattice information system is studied. Finally we introduce an applicable example
to illustrate this notion.

2. Preliminaries

We assume that the reader is familiar with the usual lattice-theoretical notation and
conventions, which can be found in [50, 51].

First we recall some definitions and properties of maps. Let B = (B,≤) be an ordered
set. A mapping f : B −→ B is said to be extensive, if x ≤ f(x) for all x ∈ B. The map f is
order preserving if x ≤ y implies f(x) ≤ f(y). Moreover, f is idempotent if f(f(x)) = f(x)
for all x ∈ B. A map c : B −→ B is said to be a closure operator on B, if c is extensive,
order-preserving, and idempotent. An element x ∈ B is c-closed if c(x)=x. Furthermore,
if i : B −→ B is a closure operator on Bϑ = (B,≥) then i is an interior operator on B. Let
B = (B,≤) and Q = (Q,≤) be ordered sets. f : B −→ Q is an order embedding, if for
any a, b ∈ B, a ≤ b in B if and only if f(a) ≤ f(b) in Q, note that an order embedding is
always an injection. An order-embedding f onto Q is called an order-isomorphism between
B and Q, we say that B and Q are order-isomorphic and write B ∼= Q. If B = (B,≤) and
Q = (Q,≤) are order-isomorphic, then B and Q are said to be dually order-isomorphic. A
pair (∇,4 ) of maps ∇ : B −→ B and 4 : B −→ B is called a dual Galois connection on B
if ∇ and 4 are order preserving and x∇4 ≤ x ≤ x4∇ for all x ∈ B.

Before we consider the Boolean lattices, we present the following lemma, where ℘(B)
denotes the power set of B, that is, the set of all subsets of B.

Lemma 2.1 [50] Let B = (B,≤) be a complete lattice, S, T ⊆ B and {Xi : i ∈ I} ⊆
℘(B)

i) If S ⊆ T , then
∨
S ⊆ ∨

T .

ii)
∨

(S ∪ T ) = (
∨
S)

∨
(
∨
T ).

iii)
∨

(
⋃{Xi : i ∈ I}) =

∨ {∨Xi ∈ I}.

Next we recall the concept of Boolean lattices. They are bounded distributive lattices
with a complementation operation.

3



Definition 2.2 [50] A lattice B = (B,≤) is called a Boolean lattice, if

i) B is distributive,

ii) B has a least element 0 and a greatest element 1, and

iii) Each x ∈ B has a complement x′ ∈ B such that x ∨ x′ = 1 and x ∧ x′ = 0.

Lemma 2.3 [50] Let B = (B,≤) be a Boolean lattice, then for all x, y ∈ B

i) 0′ = 1 and 1′ = 0,

ii) x′′ = x,

iii) (x ∨ y)′ = x′ ∧ y′, and (x ∧ y)′ = x′ ∨ y′,

iv) x ≤ y iff x ∧ y′ = 0.

Lemma 2.4 [50] Let B = (B,≤) be a complete Boolean lattice. Then for all {xi : i ∈ I} ⊆
B and y ∈ B

y ∧ (
∨
i∈I
xi) =

∨
i∈I

(y ∧ xi)

and
y ∨ (

∧
i∈I
xi) =

∧
i∈I

(y ∨ xi)

Definition 2.5 [45] Let B = (B,≤) be an ordered set and x, y ∈ B, we say that
x is covered by y (or that y covers x), and write, x ≺ y if x < y and there is no element z
in B with x < z < y.

Definition 2.6 [45] Let B = (B,≤) be a lattice with a least element 0. Then a ∈ B
is called an atom if 0 ≺ a. The set of atoms of B is denoted by A(B). The lattice B
is called atomic if every element of B is the supremum of the atoms below it, that is
x =

∨ {a ∈ A(B) : a ≤ x}.

It is obvious that in a lattice B = (B,≤) with a least element 0,

a ∧ x 6= 0⇔ a ≤ x

for all a ∈ A(B) and x ∈ B. This implies that a ∧ b = 0 for all a, b ∈ A(B) s.t a 6= b.
Furthermore, if B is atomic, then for all x 6= 0 there exists an atom a ∈ A(B) s.t a ≤ x.
Namely, if {a ∈ A(B) : a ≤ x} = φ, then x =

∨ {a ∈ A(B) : a ≤ x} =
∨
φ = 0.

Definition 2.7 [45] Let B = (B,≤) be a complete atomic Boolean lattice and let
ψ : A(B)→ B be any mapping. For any element x ∈ B, let
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x∇ =
∨ {a ∈ A(B) : ψ(a) ≤ x}, and

x4 =
∨ {a ∈ A(B) : ψ(a) ∧ x 6= 0}.

The elements x∇ and x4 are called the lower and the upper approximations of x with
respect to ψ respectively. Two elements x and y are called equivalent if they have the same
upper and lower approximations. The resulting equivalence classes are called rough sets.

Definition 2.8[29] Let B = (B,≤) be a complete atomic Boolean lattice and E be
a set of parameters. Let A be a non empty subset of E . A soft set over A, with support A
, denoted by fA on B is defined by the set of ordered pairs

fA = {(e, fA(e)) : e ∈ E, fA(e) ∈ B},

or is a function FA : E → B s.t

fA(e) 6= 0 ∀ e ∈ A ⊆ E and fA(e) = 0 if e 6∈ A.

In other words, a soft set over B is a parameterized family of elements of B. For each e ∈ A,
f(e) is considered as e-approximate element of fA

Definition 2.9[29] Let B = (B,≤) be a complete atomic Boolean lattice. Let A1, A2 ⊆
E and let fA1 and gA2 be two soft sets over B.

i) fA1 is a soft subset of gA2 , denoted by fA1 v gA2 if A1 ⊆ A2 and f(e) ≤ g(e) for every
e ∈ A1.

ii) fA1 and gA2 are called soft equal, denoted by fA1 = gA2 if fA1 v gA2 and gA2 v fA1 .

Definition 2.10 [29] Let B = (B,≤) be a complete atomic Boolean lattice. Let A ⊆ E
and let fA be a soft set over B.

i) fA is called null, denoted by 0A if f(e) = 0 for every e ∈ A.

ii) fA is called absolute, denoted by 1A if f(e) = 1 for every e ∈ A.

We stipulate that 0φ is also a soft set over B with 0 : φ→ B.
Let A ⊆ E and let fA be a soft set over B. Obviously,

0A v fA v 1A

Below, we introduce some operations on soft sets on B and investigate their properties.

Definition 2.11[29] Let B = (B,≤) be a complete atomic Boolean lattice. Let A1, A2 ⊆
E and let fA1 and gA2 be two soft sets over B.
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i) hA3 is called the intersection of fA1 and gA2 , denoted by fA1 u gA2
= hA3 if A3 = A1∩A2

and h(e) = f(e) ∧ g(e) for every e ∈ A3.

ii) hA3 is called the union of fA1 and gA2 , denoted by fA1 t gA2 = hA3 if A3 = A1 ∪A2 and
h(e) = f(e) if e ∈ A1 − A2, h(e) = g(e) if e ∈ A2 − A1 and h(e) = f(e) ∨ g(e) if
e ∈ A1 ∩ A2.

Definition 2.12 [29] Let B = (B,≤) be a complete atomic Boolean lattice. Let A ⊆ E
and let fA be a soft set over B. The complement of fA, denoted by (fA)c is defined by
(fA)c = (f c, A), where f c : A→ B is a mapping given by f c(e) = f(e)′ for every e ∈ A.

Definition 2.13[29] Let B = (B,≤) be a complete atomic Boolean lattice and Let
fE be a soft set over B.

i) fE is called full, if
∨
e∈Ef(e) = 1;

ii) fE is keeping infimum, if for any e1, e2 ∈ E, there exists e3 ∈ E such that f(e1)∧f(e2) =
f(e3);

iii) fE is keeping supremum, if for any e1, e2 ∈ E, there exists e3 ∈ E such that f(e1) ∨
f(e2) = f(e3);

iv) fE is called partition of B if

1)
∨
e∈Ef(e) = 1,

2) For every e ∈ E, f(e) 6= 0,

3) For every e1, e2 ∈ E either f(e1) = f(e2) or f(e1) ∧ f(e2) = 0.

Obviously, every partition soft set is full and fE is keeping infimum(resp. keeping supre-
mum) if and only if for every E∗ ⊆ E, there exists e∗ ∈ E such that

∧
e∈E∗f(e) =

f(e∗)(resp.
∨
e∈E∗f(e) = f(e∗)).

Definition 2.14[29] Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. For any element x ∈ B, we define a pair of operators x∨, x∧ : B → B
as follows:

x∨ =
∨ {b ∈ A(B) : ∃e ∈ A s.t b ≤ f(e) and f(e) ≤ x},

x∧ =
∨ {b ∈ A(B) : ∃e ∈ A s.t b ≤ f(e) and f(e) ∧ x 6= 0}.

The elements x∨ and x∧ are called the soft lower and the soft upper approximations
of x over B. Two elements x and y are called soft equivalent if they have the same soft
upper and soft lower approximations over B. The resulting equivalence classes are called
soft rough sets over B.

6



Proposition 2.15 [29] Let B = (B,≤) be a complete atomic Boolean lattice and
let fA be a soft set over B. Then the following properties hold.

1) If fA is full, then

i) x∨ ≤ x ≤ x∧;

ii) 1∨ = 1∧ = 1.

2) If fA is keeping supremum, then

i) For all x ∈ B, ∃e ∈ A, s.t x∨ = f(e);

ii) For all x ∈ B, ∃e ∈ A, s.t x∧ = f(e).

3) If fA is full and keeping supremum, then

x∧ = 1 for every x ∈ B and x 6= 0.

Example 2.16 Let B = {0, a, b, c, d, e, f, 1} and let the order ≤ be defined as in figure
1.
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The set of atoms of a complete atomic Boolean lattice B = (B,≤) is {a,b,c}. Let
A = {e1, e2, e3, } and fA be a soft set over B defined as follows:
f(e1) = a, f(e2) = b, and f(e3) = d. So fA is not full. Many odd situation accurs. For
example,
If x = c 6= 0, then x∨ = x∧ = 0. Also if if x = e, then x∧ = a ∨ b = d 6≥ e Morover c 6≤ x∨

or c 6≤ x∧ for any x ∈ B
In order to avoid these situations, we intoduced in [29] the notion of full soft sets on B.
Morover the concept of soft postive, soft negative and soft boundary are meaingful in the
case of full soft sets.
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In the following, we show that negative element of any x ∈ B B cannot be avoided.

Proposition 2.17 Let fA be a soft set over B which is not full. Then there exists
at least b ∈ A(B) such that b ≤ neg(x) = (x∧)′ for all x ∈ B.
Proof: Since fA is not full, i.e.

∨
a∈A

f(a) 6≤ 1. So ∃b ∈ A(B) s.t b 6≤ f(a) ∀ a ∈ A. Let

x ∈ B s.t b ≤ x. If b ≤ x∧, then ∃a ∈ A s.t b ≤ f(a) and f(a) ∧ x 6= 0 which is a contra-
diction. Hence b 6≤ x∧. By a similar argument when b 6≤ x it can be shown that b 6≤ x∧.
Therefore b ≤ 1− x∧ = (x∧)′.

3. Modified Soft Rough sets (MSR-sets) on a Complete

atomic Boolean Lattice

In the following we strengthen the concept of soft rough sets on a complete atomic Boolean
lattice B by defining modified soft rough sets on B.

Definition 3.1 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let ϕ : A(B) → ℘(A) be another map defined as ϕ(b) = {a ∈ A : b ≤ f(a)}.
Then the pair (A(B), ϕ) is called MSR-approximation space on B and for any element
x ∈ B, lower MSR-approximation space on B is defined as

x∨ϕ =
∨ {a ∈ A(B) : a ≤ x , ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x},

and its upper MSR-approximation over B is defined as

x∧ϕ =
∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ x}.

If x∨ϕ 6= x∧ϕ, Then x is said to be MSR-element over B.

Remark 3.2 Lower MSR-approximation of x over B can be defined as x∨ϕ =
∨ {a ∈ A(B) :

ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x} because if we let ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x and
a 6≤ x, then by hypothesis ϕ(a) 6= ϕ(a) which is impossible.

Lemma 3.3 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for all c ∈ A(B) and
x ∈ B

i) c ≤ x∨ϕ ⇐⇒ c ≤ x and ϕ(c) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x;

ii) c ≤ x∧ϕ ⇐⇒ ϕ(c) = ϕ(b) for some b ∈ A(B) s.t b ≤ x.

Proof: (i)(⇒) Suppose that c ≤ x∨ϕ =
∨ {a ∈ A(B) : a ≤ x , ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x}.

So c ≤ x. If ϕ(c) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x, then c∧x∨ϕ = c∧∨ {a ∈ A(B) : a ≤ x , ϕ(a) 6= ϕ(b)
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∀ b ∈ A(B) s.t b 6≤ x}= ∨ {a ∧ c : a ∈ A(B), c ≤ x , ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x}. Since
ϕ(c) 6= ϕ(b), then c 6= a, i.e. c ∧ a = 0. Hence c ≤ (x∨ϕ)′, a contradiction.
(⇐) Suppose that c ≤ x and ϕ(c) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x, then c ≤ ∨ {a ∈ A(B) : a ≤ x ,
ϕ(a) 6= ϕ(b) ∀ b 6≤ x} = x∨ϕ.
Condition(ii) can be proved similarly.

The following proposition shows a relation between soft lower approximation operators
over a complete a complete atomic Boolean lattice B and lower MSR-approximation over
B.

Proposition 3.4 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for any x ∈ B,
x∨ ≤ x∨ϕ.
Proof: Let b ∈ A(B) s.t b ≤ x∨. Then ∃ a ∈ A s.t b ≤ f(a) ≤ x. So a ∈ ϕ(b) and b ≤ x.
If b 6≤ x∨ϕ, then ϕ(b) = ϕ(c) for c ∈ A(B) s.t c 6≤ x. Since a ∈ ϕ(b) and ϕ(b) = ϕ(c), then
a ∈ ϕ(c) which implies that c ≤ f(a) ≤ x. Hence c ≤ x which is a contradiction. Therefore
x∨ ≤ x∨ϕ.

The following example shows that the relation ≤ between x∨ϕ and x∨ may be proper.

Example 3.5 Let B = {0, a, b, c, d, e, f, 1} and let the order ≤ be defined as in fig-
ure 1. Let A = {e1, e2, e3, } and fA be a soft set over B defined as follows:
f(e1) = a, f(e2) = 0, and f(e3) = e. Then the map ϕ of MSR-approximation space
(A(B), ϕ) will be ϕ(a) = {e1, e3}, ϕ(b) = φ, and ϕ(c) = {e3}.
Let x = d. Then x∨ϕ = a ∨ b = d and x∨ = a. Thus x∨ ≤ x∨ϕ.

In the following proposition we study a necessary and sufficient condition for x∨ϕ ≤ x∨

to be hold for any x ∈ B.

Proposition 3.6 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for any x ∈ B,
x∨ϕ ≤ x∨ iff for every b ∈ A(B) ∃ e ∈ A s.t f(e) =

∨{a ∈ A(B) : ϕ(a) = ϕ(b)}.
Proof: (⇒) Assume that x∨ϕ ≤ x∨ for any x ∈ B. Let b ∈ A(B) and x =

∨{a ∈
A(B) : ϕ(a) = ϕ(b)}. So x∨ϕ =

∨{a ∈ A(B) : ϕ(a) = ϕ(c) for some c ∈ A(B) c ≤ x}
=

∨{a ∈ A(B) : ϕ(a) = ϕ(b)} = x. Since b ≤ x = x∨ϕ and x∨ϕ ≤ x∨, then b ≤ x∨.
Therefore e ∈ A s.t b ≤ f(e) and f(e) ≤ x. Also, for all a ∈ A(B) s.t a ≤ x, we have
ϕ(a) = ϕ(b),thus e ∈ ϕ(b) = ϕ(a). So a ≤ f(e) and therefore x ≤ f(e). Consequently,
f(e) = x =

∨{a ∈ A(B) : ϕ(a) = ϕ(b)}.
(⇐) Let x ∈ B and b ∈ A(B) s.t b ≤ x∨ϕ. So for every a ∈ A(B), if ϕ(ba) = ϕ(b),
then a ≤ x. Hence

∨{a ∈ A(B) : ϕ(a) = ϕ(b)} ≤ x. By assumption, ∃ e ∈ A s.t
f(e) =

∨{a ∈ A(B) : ϕ(a) = ϕ(b)}. Hence b ≤ f(e) and f(e) ≤ x. Therefore b ≤ x∨ and
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consequently, x∨ϕ ≤ x∨.

Remark 3.7 In general, there is no relation between x∧ϕ and x∧. If x = e in Ex-
ample 2.10, then x∧ = d and x∧ϕ = e 6≤ d.

In Proposition 3.8, 3.9 and 3.10, we show that there is a relation between x∧ϕ and x∧

if some specific conditions hold.

Proposition 3.8 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then fA is full iff
x∧ϕ ≤ x∧ for every x ∈ B.
Proof: (⇒) Assume that fA is full and x ∈ B. Let a ∈ A(B) s.t a ≤ x∧ϕ, then ∃ b ∈ A(B)
s.t b ≤ x and ϕ(a) = ϕ(b). Since b ≤ 1 =

∨
e∈A

f(e), then ∃ e ∈ A s.t b ≤ f(e). Hence

b ≤ f(e) ∧ x and thus f(e) ∧ x 6= 0. By, b ≤ f(e), we have e ∈ ϕ(b) = ϕ(a) and thus
a ≤ f(e). Consequently, x∧ϕ ≤ x∧.
(⇐) Suppose that x∧ϕ ≤ x∧ for every x ∈ B, we show that 1 ≤ ∨

e∈A
f(e). Let a ∈ A(B),

then a ≤ a∧ϕ ≤ a∧. Therefore ∃ e ∈ A s.t f(e)∧a 6= 0 and thus a ≤ f(e) because a ∈ A(B).
Consequently, fA is a full soft set over B.

Proposition 3.9 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then x∧ ≤ x∧ϕ for
every x ∈ B iff for every e1, e2 ∈ A, f(e1) ∧ f(e2) = 0 whenever f(e1) 6= f(e2).
Proof: (⇒) Assume that x∧ ≤ x∧ϕ for every x ∈ B. Let e1, e2 ∈ A, if f(e1) ∧ f(e2) 6= 0,
then ∃ b ∈ A(B) s.t b ≤ f(e1) ∧ f(e2). Since b ≤ f(e1), then f(e1) ≤

∨{f(e) : b ≤ f(e)} =∨{f(e) : b ∧ f(e) 6= 0} = b∧ ≤ b∧ϕ =
∨{a ∈ A(B) : ϕ(a) = ϕ(b)}. On the other hand we

show that
∨{a ∈ A(B) : ϕ(a) = ϕ(b)} ≤ f(e1). Let c ∈ A(B) s.t c ≤ ∨{a ∈ A(B) : ϕ(a)

= ϕ(b)}, then ϕ(c) = ϕ(b) and thus e1 ∈ ϕ(b) = ϕ(c). Therefore c ≤ f(e1) and conse-
quently, f(e1) =

∨{a ∈ A(B) : ϕ(a) = ϕ(b)}. Similarly, by b ≤ f(e2), f(e2) =
∨{a ∈

A(B) : ϕ(a) = ϕ(b)} and hence f(e1) = f(e2) .
(⇐) Assume that for every e1, e2 ∈ A, f(e1)∧f(e2) = 0 whenever f(e1) 6= f(e2). Let x ∈ B
and a ∈ A(B) s.t a ≤ x∧, then ∃ e1 ∈ A s.t a ≤ f(e1) and f(e1) ∧ x 6= 0. So, ∃ b ∈ A(B)
s.t b ≤ f(e1) ∧ x. We show that ϕ(a) = {e2 ∈ A : f(e2) = f(e1)}. If f(e2) 6= f(e1), then
f(e1)∧f(e2) = 0 by assumption. Thus a 6≤ f(e2) because a ≤ f(e1) and therefore e2 6∈ ϕ(a).
So ϕ(a) ⊆ {e2 ∈ A : f(e2) = f(e1)}. On the other hand, if f(e2) = f(e1), then a ≤ f(e2)
and hence e2 ∈ ϕ(a). Consequently, ϕ(a) = {e2 ∈ A : f(e2) = f(e1)}. Similarly we can
show that ϕ(b) = {e2 ∈ A : f(e2) = f(e1)} and thus ϕ(a) = ϕ(b). Since b ≤ x, then a ≤ x∧ϕ.

Corollary 3.10 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. If f(e) 6= 0 for every
e ∈ A, then fA is a partition soft set iff x∧ = x∧ϕ for every x ∈ B.
Proof: Obvious.
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Proposition 3.11 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. If ϕ(a) = ϕ(b) for some
a, b ∈ A(B), then for any x ∈ B either a, b ≤ x∧ϕ or a, b 6≤ x∧ϕ.

Proof: If a ≤ x∧ϕ, then ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. Since ϕ(a) = ϕ(b), then
ϕ(b) = ϕ(c), c ≤ x. This implies that b ≤ x∧ϕ.

Proposition 3.12 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for all x ∈ B

i) x∨ϕ ≤ x ≤ x∧ϕ

ii) 0∨ϕ = 0 = 0∧ϕ

iii) 1∨ϕ = 1 = 1∧ϕ

Proof: (i)Assume that b ∈ A(B), s.t b ≤ x∨ϕ, then b ≤ x. For the other inclusion, let
b ∈ A(B) s.t b ≤ x. Then ϕ(b) = ϕ(b) for some b ≤ x. Thus b ≤ x∧ϕ.
(ii) 0∨ϕ =

∨ {a ∈ A(B) : a ≤ 0 , ϕ(a) 6= ϕ(b) ∀b ∈ A(B) s.t b 6≤ 0} = 0. Also, 0∧ϕ =
∨ {a ∈ A(B) :

ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ 0} = 0. Claim (iii) can be proved similarly.

Proposition 3.13 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for all x, y ∈ B

i) The mappings ∨ϕ : B −→ B and ∧ϕ : B −→ B are order preserving.

ii) The mappings ∨ϕ : B −→ B and ∧ϕ : B −→ B are mutually dual.

Proof: i) Assume that x ≤ y and a ≤ x∨ϕ. Let b ∈ A(B) s.t b 6≤ y. Since x ≤ y, then
b 6≤ x. Since a ≤ x∨ϕ, then ϕ(a) 6= ϕ(b). So a ≤ y∨ϕ and we get x∨ϕ ≤ y∨ϕ . Now let b ≤ x∧ϕ,
that is ϕ(b) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. Since x ≤ y, then ϕ(b) = ϕ(c) for some
c ∈ A(B) s.t c ≤ y. Thus b ≤ y∧ϕ . Consequently, x∧ϕ ≤ y∧ϕ .

ii) We must show that x∧ϕ = ((x
′
)∨ϕ)

′
and ((x

′
)∧ϕ)

′
= x∨ϕ. Let a ∈ A(B) s.t a ≤ ((x

′
)∨ϕ)

′
, then

a 6≤ (x
′
)∨ϕ. So, either a 6≤ x or ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ (x

′
)
′

= x, that is
a ≤ x∧ϕ.

Conversely, Let a ∈ x∧ϕ, then ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ x. Thus a 6≤ (x
′
)∨ϕ,

that is a ≤ ((x
′
)∨ϕ)

′
.

Let a ∈ A(B) s.t a ≤ ((x
′
)∧ϕ)

′
, then a 6≤ (x

′
)∧ϕ. Hence ϕ(a) 6= ϕ(b) for all b ∈ A(B) s.t

b ≤ x
′
. That is a ≤ x because otherwise, if a ≤ x

′
, then ϕ(a) 6= ϕ(a), a contradiction.

Thus a ≤ x, ϕ(a) 6= ϕ(b) for all b ∈ A(B) s.t b ≤ x
′

and consequently, a ≤ x∨ϕ.

Conversely, let a ∈ A(B) s.t a ≤ x∨ϕ, then a ≤ x, ϕ(a) 6= ϕ(b) for all b ∈ A(B) s.t b ≤ x
′
.

Thus a 6≤ (x
′
)∧ϕ, i.e a ≤ ((x

′
)∧ϕ)

′
.
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Corollary 3.14 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then fA is full iff
x ≤ x∧ for every x ∈ B.
Proof: (⇒) Assume that fA is full and x ∈ B. Then x ≤ x∧ϕ ≤ x∧ (by Propositions 3.8
and 3.12).
(⇐) Assume that x ≤ x∧ for every x ∈ B. Let b ∈ A(B), then b ≤ b∧ ≤ ∨{f(e) : e ∈ A
andf(e) ∧ b 6= 0} =

∨{f(e) : e ∈ A and b ≤ f(e)}. Therefore ∃ e ∈ A s.t b ≤ f(e) and
consequently, fA is full.

For all S ⊆ B, we denote S∨ϕ = {x∨ϕ : x ∈ S} and S∧ϕ = {x∧ϕ : x ∈ S}.

Proposition 3.15 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space, then

i) For all S ⊆ B, ∨S∧ϕ = (∨S)∧ϕ and ∧S∧ϕ ≥ (∧S)∧ϕ.

ii) For all S ⊆ B, ∧S∨ϕ = (∧S)∨ϕ and ∨S∨ϕ ≤ (∨S)∨ϕ.

iii) (B∧ϕ ,≤) is a complete lattice; 0 is the least element and 1∧ϕ is the greatest element of
(B∧ϕ ,≤).

iv) (B∨ϕ ,≤) is a complete lattice; 0 is the least element and 1∨ϕ is the greatest element
of(B∨ϕ ,≤).

v) The kernal Θ∨ϕ = {(x, y) : x∨ϕ = y∨ϕ} of the map ∨ϕ : B −→ B is a congruence on the
semi lattice (B,∧) such that the Θ∨ϕ-class of any x has a least element.

vi) The kernal Θ∧ϕ = {(x, y) : x∧ϕ = y∧ϕ} of the map ∧ϕ : B −→ B is a congruence on the
semi lattice (B,∨ϕ) such that the Θ∧ϕ-class of any x has a least element.

Proof: (i) Let S ⊆ B. The mapping ∧
ϕ:B −→ B is order preserving, which implies

that ∨S∧ϕ ≤ (∨S)∧ϕ and ∧S∧ϕ ≥ (∧S)∧ϕ. Let b ∈ A(B) and assume that a ≤ (∨S)∧ϕ. So,
ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ ∨S. So, ϕ(a) = ϕ(b) for some b ∈ A(B) and x ∈ S
s.t b ≤ x. So {a ∈ A(B) : ϕ(a) = ϕ(b) forsome b ∈ A(B) s.t b ≤ ∨S}
⊆ ∪

x∈S{a ∈ A(B) : ϕ(a) = ϕ(b)forsome b ∈ A(B) s.t b ≤ x}. Then
(∨S)∧ϕ =

∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ ∨S}
≤ ∨

(∪
x∈S{a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ ∨S})

=
∨

x∈S(
∨{a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ ∨S}) (by Lemma 2.1)

=
∨{x∧ϕ : x ∈ S} =

∨
S∧ϕ

(ii) Let S ⊆ B. The mapping ∨ϕ:B −→ B is order preserving, which implies that (∧S)∨ϕ ≤
∧S∨ϕ and ∨S∨ϕ ≤ (∨S)∨ϕ. Let a ∈ A(B) s.t a ≤ ∧S∨ϕ = ∧{x∨ϕ : x ∈ S}. So, a ≤ x and
ϕ(a) 6= ϕ(b) for all b ∈ A(B) s.t b 6≤ x for every x ∈ S. Hence ϕ(a) 6= ϕ(b) for all b ∈ A(B)
s.t b 6≤ ∧S. In fact if b 6≤ ∧S, then ∃ x ∈ S s.t b 6≤ x. So, ϕ(a) 6= ϕ(b). Therefore
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b ≤ (∧S)∨ϕ. Consequently, ∧S∨ϕ ≤ (∧S)∨ϕ. Assertions (iii) and (iv) follow easily from (i),
(ii) and Proposition 3.12(i). The proof of (v) and (vi) follow by (i) and (ii).

The inequality in and in Proposition 3.15 may be proper. This can be seen in the fol-
lowing example.

Example 3.16 Let B = {0, a, b, c, d, e, f, 1} and let the order ≤ be defined as in figure
1.
Let A = {e1, e2, e3, } and fA be a soft set over B defined as follows:
f(e1) = 0, f(e2) = c, and f(e3) = d. Then the map ϕ of MSR-approximation space
(A(B), ϕ) will be ϕ(a) = {e3}, ϕ(b) = {e3}, and ϕ(c) = {e2}.
If we take x = d and y = f . Then x ∨ y = 1 and (x ∨ y)∨ϕ = 1. Also, x∨ϕ = c, y∨ϕ = c and
x∨ϕ ∨ y∨ϕ = c. Thus (x ∨ y)∨ϕ>6=x

∨
ϕ ∨ y∨ϕ .

Now x∧ϕ = a ∨ b = d, y∧ϕ = a ∨ b = d. So x∧ϕ ∧ y∧ϕ = d. On the other hand x ∧ y = e ∧ f = c
and (x ∧ y)∧ϕ = 0. Thus x∧ϕ ∧ y∧ϕ>6= (x ∧ y)∧ϕ.

Proposition 3.17 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then (B∨ϕ ,≥) ∼= (B∧ϕ ,≤)

Proof: We show that x∧ϕ−→ (x
′
)∨ϕ is the required dual order isomorphism. It is obvious

that x∧ϕ−→ (x
′
)∨ϕ is onto (B∨ϕ ,≥). We show that x∧ϕ−→ (x

′
)∨ϕ is order embedding. Suppose

that x∧ϕ ≤ y∧ϕ . Then for all a ∈ A(B), a ≤ x∧ϕ implies a ≤ y∧ϕ . So, for all a ∈ A(B) such
that ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ x implies ϕ(a) = ϕ(b) for some b ∈ A(B)
s.t b ≤ y. Suppose that (y

′
)∨ϕ 6≤(x

′
)∨ϕ. So there exists a ∈ A(B) such that a ≤ (y

′
)∨ϕ and

a 6≤ (x
′
)∨ϕ. Since a ≤ (y

′
)∨ϕ, then a ≤ y′ and ϕ(a) 6= ϕ(b) for all b ∈ A(B) s.t b ≤ (y

′
)
′

= y.

Also a 6≤ (x
′
)∨ϕ implies either a 6≤ x′ or ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ (x

′
)
′

= x,

a contradiction. Hence (y
′′
)∨ϕ ≤ (x

′
)∨ϕ. On the other hand, assume that (y

′
)∨ϕ ≤ (x

′
)∨ϕ and

x∧ϕ 6≤ y∧ϕ . So there exists a ∈ A(B) such that a ≤ x∧ϕ and a 6≤ y∧ϕ . So ϕ(a) = ϕ(b) for some
b ∈ A(B) s.t b ≤ x. But ϕ(a) 6= ϕ(c) for all c ∈ A(B) s.t c ≤ y, a contradiction.

Proposition 3.18 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for all x ∈ B

i) (x∨ϕ)∨ϕ = x∨ϕ;

ii) (x∧ϕ)∧ϕ = x∧ϕ.

Proof: i) (x∨ϕ)∨ϕ =
∨ {a ∈ A(B) : a ≤ x∨ϕ , ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x∨ϕ}. By Propo-

sition 3.12 x∨ϕ ≤ x which gives x
′ ≤ (x∨ϕ)

′
. So if b ≤ x

′
, then b ≤ (x∨ϕ)

′
. Therefore

(x∨ϕ)∨ϕ =
∨ {a ∈ A(B) : a ≤ x∨ϕ , ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ x} = x∨ϕ.

ii)By Proposition 3.12 x∧ϕ ≤ (x∧ϕ)∧ϕ. For the reverse inclusion, let a ≤ (x∧ϕ)∧ϕ, then ϕ(a) =
ϕ(b) for some b ∈ A(B) s.t b ≤ x∧ϕ, that is ϕ(b) = ϕ(c) for some c ∈ A(B) s.t c ≤ x.
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This implies that ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. Hence a ≤ x∧ϕ and therefore
(x∧ϕ)∧ϕ ≤ x∧ϕ. This implies that (x∧ϕ)∧ϕ = x∧ϕ.

Proposition 3.19 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then for all x ∈ B

i) (x∨ϕ)∧ϕ = x∨ϕ

ii) (x∧ϕ)∨ϕ = x∧ϕ

Proof: i)x∨ϕ ≤ (x∨ϕ)∧ϕ by Proposition 3.12. For the converse assume that a ≤ (x∨ϕ)∧ϕ. So
ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ x∨ϕ. Hence ϕ(b) 6= ϕ(c) for all c ∈ A(B) s.t c ≤ xc.
Since ϕ(a) = ϕ(b), then ϕ(a) 6= ϕ(c) for all c ∈ A(B) s.t c ≤ xc. Since ϕ(a) = ϕ(a), then
a 6≤ xc, i.e a ≤ x. So a ≤ x∨ϕ. Hence (x∨ϕ)∧ϕ ≤ x∨ϕ and we conclude that (x∨ϕ)∧ϕ = x∨ϕ.
ii)By Proposition 3.12 (x∧ϕ)∨ϕ ≤ x∧ϕ. Conversely, if a 6≤ (x∧ϕ)∨ϕ, then either a 6≤ x∧ϕ or
ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ (x∧ϕ)c. If a 6≤ x∧ϕ, then we get our required result. In
later case, ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ (x∧ϕ)c. So that b 6≤ (x∧ϕ) i.e ϕ(b) 6= ϕ(z)
for all z ∈ A(B) s.t z ≤ x. Therefore ϕ(a) 6= ϕ(z) for all z ∈ A(B) s.t z ≤ x. Also, a ≤ xc

because if a 6≤ xc, then a ≤ x. So ϕ(a) = ϕ(b) 6= ϕ(a) a contradiction. Hence a ≤ (xc)∨ϕ.
That is a 6≤ ((xc)∨ϕ)c = x∧ϕ by Proposition 3.13.

Corollary 3.20 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space. Then the pair (∨ϕ,

∧
ϕ)

is a dual Galois connection on B
Proof: By Propositions and (x∨ϕ)∧ϕ = x∨ϕ ≤ x ≤ x∧ϕ = (x∧ϕ)∨ϕ.

Proposition 3.21 Let B = (B,≤) be a complete atomic Boolean lattice and let fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space, then

i) The map ∧ϕ : B −→ B is a closure operator.

ii) The map ∨ϕ : B −→ B is an interior operator.

iii) (B∨ϕ ,≤) and (B∧ϕ ,≤) are sublattices of (B,≤).

Proof: i) The mapping ∧ϕ : B −→ B is extensive, and it is order-preserving by Proposition
3.12. By Proposition 3.18, (x∧ϕ)∧ϕ = x∧ϕ. Claim (ii) follows from Lemma 2.3 and Proposition
3.17.
iii) Suppose that x∨ϕ, y∨ϕ ∈ B∨ϕ . Then obviously, x∨ϕ ∧ y∨ϕ = (x ∧ y)∨ϕ which implies that
x∨ϕ ∧ y∨ϕ ∈ B∨ϕ . Next we show that x∨ϕ ∨ y∨ϕ = (x∨ϕ ∨ y∨ϕ)∨ϕ. It is clear that x∨ϕ ≤ x∨ϕ ∨ y∨ϕ and
x∨ϕ = (x∨ϕ)∨ϕ ≤ (x∨ϕ ∨ y∨ϕ)∨ϕ. Similarly, we can show that y∨ϕ ≤ (x∨ϕ ∨ y∨ϕ)∨ϕ. Thus, (x∨ϕ ∨ y∨ϕ)∨ϕ
is an upper bound of x∨ϕ and x∨ϕ. Let z ∈ B be an upper bound of x∨ϕ and x∨ϕ. Then
x∨ϕ ≤ z and y∨ϕ ≤ z, which implies x∨ϕ ∨ y∨ϕ ≤ z. So, (x∨ϕ ∨ y∨ϕ)∨ϕ ≤ x∨ϕ ∨ y∨ϕ ≤ z. Thus,
x∨ϕ ∨ y∨ϕ = (x∨ϕ ∨ y∨ϕ)∨ϕ and x∨ϕ ∨ y∨ϕ ∈ B∨ϕ . The other part can be proved analogously.
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Since every sublattice of a distributive lattice is distributive (see[5], for example). There-
fore, we can write the following corollary.

Corollary 3.22 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B. Let (A(B), ϕ) be a MSR-approximation space, then (B∨ϕ ,≤) and (B∧ϕ ,≤)
are distributive.

Remark 3.22 1) It is mentioned that in order to prove that for all S ⊆ B, ∧S∨ = (∧S)∨

in [45] we employed a strong condition on soft set fA over a complete atomic Boolean lat-
tice to be keeping infimum. However in proving ∧S∨ϕ = (∧S)∨ϕ no such condition is required.

2) It is clear that MSR-element over a complete atomic Boolean lattice satisfies all the
basic properties similar to rough element introduced by Jarvinen [45]. Thus, MSR-element
over a complete atomic Boolean lattice provides a good combination of roughness and
parametrization.

3. Relation between MSR sets and Rough sets on a

Complete atomic Boolean Lattice

In the following, we introduce the notion of Boolean lattice information system and we
show that every soft sets on a complete atomic Boolean lattice induces a Boolean lattice
information system and vice versa.

Definition 4.1 Let B = (B,≤) be a complete atomic Boolean lattice and A be a finite
set of attributes. The pair (A(B), A, V, g) is called lattice information system, if g is an
information function from A(B)× A to V =

⋃
e∈A

Ve where Ve = {g(b, e) : b ∈ A(B), e ∈ A}
is the values of the attribute set e.

Definition 4.2 A lattice information system (A(B), A, V, g) is called Boolean lattice
information system if V = {0, 1}.

Definition 4.3 Let B = (B,≤) be a complete atomic Boolean lattice and let S = fA be a
soft set over B. Then fA induces a Boolean lattice information system Is = (A(B), A, V, gs),
where gs : A(B)× A −→ V = {0, 1}, For any b ∈ A(B) and e ∈ A,

gs(b, e) =

{
1 if b ≤ f(e),
0 if b 6≤ f(e)
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Definition 4.4 Let B = (B,≤) be a complete atomic Boolean lattice and I = (A(B),
A, V, g) be a lattice information system. Then SI = f IA is called a soft set over B induced
by I, where f IA : A −→ B and for e ∈ A, f I(e) = ∨{b ∈ A(B) : g(b, e) = 1}.

Proposition 4.5 Let B = (B,≤) be a complete atomic Boolean lattice and = fA
be a soft set over B. Let Is = (A(B), A, V, gs) be a Boolean lattice information system
induced by fA and SIs = f IsA be a soft set over B induced by Is. Then f IsA = f IA.

Proof: By Definition 4.4, for any e ∈ A, f IsA (e) = ∨{b ∈ A(B) : gs(b, e) = 1}.
By Definition 4.3, for any b ∈ A(B) and e ∈ A,

gs(b, e) =

{
1 if b ≤ f(e),
0 if b 6≤ f(e)

This implies that gs(b, e) = 1⇔ b ≤ f(e). So, for any b ∈ A(B) e ∈ A, f(e) = f Is(e).

Proposition 4.6 Let B = (B,≤) be a complete atomic Boolean lattice and I =
(A(B), A, V, g) be a lattice information system. Let SI = f IA be a soft set over B in-
duced by I and IsI = (A(B), A, V, gsI ) be a Boolean lattice information system induced by
SI . Then I = IsI .

Proof:By Definition 4.3, for any b ∈ A(B) and e ∈ A,

gsI (b, e) =

{
1 if b ≤ f I(e),
0 if b 6≤ f I(e)

By Definition 4.4, for any e ∈ A, f I(e) = ∨{b ∈ A(B) : g(b, e) = 1}. Since I =
(A(B), A, V, g) be a Boolean lattice information system, then g(b, e) = 0 if b 6≤ f I(e).
This implies that

g(b, e) =

{
1 if b ≤ f I(e),
0 if b 6≤ f I(e)

So for any b ∈ A(B) and e ∈ A, gsI (b, e) = g(b, e). Hence gsI = g and Consequently, I = IsI .

Definition 4.7 Let B = (B,≤) be a complete atomic Boolean lattice and let S = fA be
a soft set over B. Let Is = (A(B), A, V, gs) be a Boolean lattice information system induced
by S = fA. Then Is induces a mapping ψs : A(B) −→ B as follows; for every a, b ∈ A(B)

a ≤ ψs(b) ⇔ ∀ e ∈ A gs(a, e) = gs(b, e)

Definition 4.8[45] Let B = (B,≤) be a complete atomic Boolean lattice and let fA be
a soft set over B. Define a mapping ψf : A(B)→ B by

c ≤ ψf (b)⇔ ∃e ∈ A, s.t c ≤ f(e) and b ≤ f(e)
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for every c, b ∈ A(B). Then ψf is called the mapping induced by fA on B.

Definition 4.9[45] Let B = (B,≤) be a complete atomic Boolean lattice and let fA be
a soft set over B. Let ψf : A(B) → B be the mapping induced by fA on B. We define a
pair of soft approximation operators operators ∇f ,4f : B → B as follows

x∇f =
∨ {b ∈ A(B) : ψf (b) ≤ x}, and

x4f =
∨ {b ∈ A(B) : ψf (b) ∧ x 6= 0}.

The elements x∇f and x4f are called the soft lower and the soft upper approximations
of x with respect to the mapping ψf induced by fA respectively. Two elements x and y are
called equivalent if they have the same soft upper and lower approximations with respect
to the mapping ψf induced by fA on B. The resulting equivalence classes are called soft
rough sets with respect to the mapping ψf induced by fA on B.

Proposition 4.10 Let B = (B,≤) be a complete atomic Boolean lattice and S = fA
be a partition soft set over B. Let Is = (A(B), A, V, gs) be a Boolean lattice information
system induced by fA. Then

a ≤ ψs(b) ⇔ a ≤ ψf (b) ∀ a, b ∈ A(B)

Proof: (⇒) Let a, b ∈ A(B) s.t a ≤ ψs(b). Then ∀ e ∈ A gs(a, e) = gs(b, e). Since a ≤ 1
and fA be a partition soft set, then ∃ e ∈ A s.t a ≤ f(e). So g(b, e) = g(a, e) = 1 and
therefore b ≤ f(e). Consequently, a ≤ ψf (b).
(⇐)Let a, b ∈ A(B) s.t a ≤ ψf (b). Then ∃ e1 ∈ A s.t a ≤ f(e1) and b ≤ f(e1). So
gs(a, e1) = gs(b, e1). For every e2 ∈ A− e1, if f(e1) = f(e2), then a ≤ f(e2) and b ≤ f(e2)
and thus gs(a, e2) = 1 = gs(b, e2). If f(e1) 6= f(e2), then f(e1)∧ f(e2) = 0. Since a ≤ f(e1)
and b ≤ f(e1), then a 6≤ f(e2) and b 6≤ f(e2) and therefore gs(a, e2) = 0 = gs(b, e2). So,
gs(a, e) = gs(b, e) ∀e ∈ A and consequently a ≤ ψs(b).

Definition 4.11 Let B = (B,≤) be a complete atomic Boolean lattice and let S = fA
be a soft set over B. Let (A(B), ϕ) be a MSR-approximation space and Is = (A(B), A, V, gs)
be a Boolean lattice information system induced by S = fA. Then

i) ∀a, b ∈ A(B) a ≤ ψs(b)⇔ ϕ(a) = ϕ(b) .

ii) ∀x ∈ B, x∨ϕ = x∇s , where x∇s =
∨ {b ∈ A(B) : ψs(b) ≤ x}.

iii) ∀x ∈ B, x∧ϕ = x4s , where x4s =
∨ {b ∈ A(B) : ψs(b) ∧ x 6= 0}

Proof:i)(⇒) Let a, b ∈ A(B) s.t a ≤ ψs(b). So gs(a, e) = gs(b, e) e ∈ A. Let e ∈ ϕ(a), so
a ≤ f(e) and hence gs(a, e) = 1. Therefore gs(b, e) = 1 and thus b ≤ f(e). Consequently,
e ∈ ϕ(b). So ϕ(a) ⊆ ϕ(b), similarly we can show that ϕ(b) ⊆ ϕ(a).
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Table 1: Lattice information system of the soft set FA
e1 e2 e3

a 0 1 0
b 1 0 1
c 0 1 0

(⇐) Let a, b ∈ A(B) s.t ϕ(a) = ϕ(b). Let e ∈ A, if gs(a, e) = 1, then a ≤ f(e) and hence
e ∈ ϕ(a) = ϕ(b). Also, b ≤ f(e) and so gs(b, e) = 1. If gs(a, e) = 0, then a 6≤ f(e) and
hence e 6∈ ϕ(a) = ϕ(b). Therefore b 6≤ f(e) and thus gs(b, e) = 0. So gs(a, e) = gs(b, e) ∀
e ∈ A and consequently, a ≤ ψs(b).
ii) Let x ∈ B and b ∈ A(B) s.t b ≤ x∨ϕ. We show that ψs(b) ≤ x. Let a ∈ A(B) s.t
a ≤ ψs(b), then ϕ(a) = ϕ(b) by i). But b ≤ x∨ϕ implies that ϕ(b) 6= ϕ(c) ∀ c ∈ A(B) s.t
c 6≤ x. Since ϕ(a) = ϕ(b), then a ≤ x and therefore ϕs(b) ≤ x. This implies that x∨ϕ ≤ x∇s .
Conversely, Let b ∈ A(B) s.t b ≤ x∇s . So ψs(b) ≤ x. Let a ∈ A(B) s.t a 6≤ x, thus a 6≤ ψs(b).
Therefore ϕ(a) 6= ϕ(b) by i) and so b ≤ x∨ϕ. Consequently, x∇s ≤ x∨ϕ.
iii) Let x ∈ B and b ∈ A(B) s.t b ≤ x∧ϕ, then ∃ a ∈ A(B) s.t a ≤ x and ϕ(a) = ϕ(b). So
a ≤ ψs(b) and therefore ψs(b) ∧ x 6= 0. Consequently, b ≤ x4s .
Conversely, let b ∈ A(B) s.t b ≤ x4s , then ψs(b) ∧ x 6= 0. Thus ∃ a ∈ A(B) s.t a ≤ x and
a ≤ ψs(b). Thus ϕ(a) = ϕ(b) by i) and therefore b ≤ x∧ϕ.

3. Modified rough approximations of soft sets on a

complete atomic boolean lattice

In this section, we introduce the concept of Boolean lattice information system with re-
spect to another Boolean lattice information system. We study upper and lower MSR-
approximations of soft set on a complete atomic Boolean lattice with respect to another
soft set.

Definition 5.1 Let B = (B,≤) be a complete atomic Boolean lattice and let fA1 be a
soft set over B. Let (A(B), ϕ) be a MSR-approximation space where ϕ : A(B) −→ P (A1)
is defined as ϕ(b) = {a ∈ A : b ≤ f(a)}. Let gA2 be another soft set over B. For any e ∈ A2,
lower and upper MSR of gA2 over B are denoted by (gA2)

∨
ϕ and (gA2)

∧
ϕ defined as

g(e)∨ϕ =
∨ {a ∈ A(B) : a ≤ g(e) , ϕ(a) 6= ϕ(b) ∀ b ∈ A(B) s.t b 6≤ g(e)} ∀e ∈ A2,

g(e)∧ϕ =
∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ g(e)} ∀e ∈ A2.

Example 5.2 Let B = {0, a, b, c, d, e, f, 1} representing 8 patients, where 0 denotes
patients who drink mineral water only, a denotes patients who drink coffee, b denotes
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patients who drink cola, c denotes patients who drink tea, d denotes patients who drink
caffeine drinks e denotes patients who drink antioxidant drinks and f denotes patients who
drink cold drinks. So, the order ≤ can be defined as in figure 1.
Let A1 = {e1, e2, e3, }, where e1 denotes temperature, e2 denotes headache and e3 denotes
stomach problem and let fA1 be a soft set over B representing the diagnosis of doctor M,
defined as follows:
f(e1) = b, f(e2) = e and f(e3) = b. Then the Boolean lattice information system of fA1

can be given by table 1, where 1 and 0 denote yes and no respectively.
Then the map ϕ of MSR-approximation space (A(B), ϕ) will be ϕ(a) = {e2}, ϕ(b) =
{e1, e3}, and ϕ(c) = {e2}.
Let A2 == {e1, e2, e3, e4} and gA2 be another soft set over B representing the diagnosis of
doctor N , where A2 = {e1, e2, e3, e4} and e4 represents cough, defined as follows:
g(e1) = d, g(e2) = b, g(e3) = c and g(e4) = e
lower MSR of gA2 over B are
g(e1)

∨
ϕ = b, g(e2)

∨
ϕ = b, g(e3)

∨
ϕ = 0 and g(e4)

∨
ϕ = a.

upper MSR of gA2 over B are
g(e1)

∧
ϕ = a ∨ b ∨ c = 1, g(e2)

∧
ϕ = b, g(e3)

∧
ϕ = a ∨ c = e and g(e4)

∧
ϕ = e.

3. Conclusion

Lattice is a very important structure in mathematics. We introduced the concept of soft sets
on a complete atomic Boolean lattice B. We combine soft set and rough set by introducing
the concept of soft rough set on B. Some shortcoming became the part of soft rough
sets on B. In this paper, we introduced the concept of Modified soft rough sets(MSR) on
a complete atomic Boolean lattice. Some important properties of MSR on B have been
discussed. Similar results which require some strong conditions for their proof in soft rough
sets on B can be proved in MSR sets without these conditions.
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